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of Liquids with the Self 
Consistent Field Theory of Melting 
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(Received November 30, 7973) 

In this paper we compare the recent description of melting via the self consistent field 
scheme of Johannsson’ with the Percus-Yevick’ collective coordinate approach t o  the 
theory of liquids, as applied to  the melting phenomenon and the liquid structure factor 
of liquid metals by Omini.’ We show that the formalism used to  extract a self consistent 
order parameter naturally leads to the concept of a liquid phonon, analogous to  a 
paramagnon in the theory of ferromagnetic-paramagnetic or antiferromagnetic-paramag- 
netic phase transitions, which can readily be identified with the Percus-Yevick’ technique 
of describing the liquid in terms of 3 N  collective coordinates. This description has been 
used very successfully by Omini’ to  relate the entropy of melting to  the long wave- 
length limit of the liquid structure factor for a variety of simple metals, so that a relation 
can be  demonstrated between the self consistent field parameter and melting via another 
route, the Percus-Yevick’ theory. Lastly, we relate both the self consistent field (order) 
parameter and the energy of formation of  a vacancy-interstitial pair, via the Percus- 
Yevick dispersion relation, to the Lindemann melting criterion parameter, the root mean 
square lattice displacement of the atoms Lritical to melting. 

1. SELF CONSISTENT FIELD THEORY OF MELTING 

Johannsson’ , continuing in the vein of Brout4, has recently described melting 
in an analogous way to the Matsubara-Yokota’ theory of the antiferromag- 

t Present Address: 68 Stratford Road, Brooklyn, New York 11218, U.S.A. 
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242 E. SIEGEL 

netic-paramagnetic phase transition via a self consistent energy gap in a 
Fermion system. The phonons of his system are in the form of a coherent 
superposition of virtual vacancy-interstitial pairs (Frenkel defects). If the 
phonon dispersion relation of the solid contains a high enough wavevector, 
b, so that the phonon frequency maximum, w,, is equal to the vacancy- 
interstitial pair production activation energy, U, the phonon will spontaneous- 
ly become unstable with respect to the pair production, and the lattice will 
melt. This resembles formally the electron-hole pair production decay of 
plasmons in an electron gas, and the Stoner excitation (paramagnon) decay 
of the magnons of an itinerant ferromagnet or antiferromagnet as the Curie 
or Nee1 temperature is exceeded. This view of the phonons is equivalent to 
viewing each phonon as a superposition of Einstein phonons (with equal 
frequencies), each one of which is actually a vacancy-interstitial pair, with 
frequency a, = U (in atomic units, where Ti = 1). The classical theory of 
Lennard-Jones and Devonshire6 is identical to the above description and is 
a classical, molecular field theory. 

Johannsson' describes the crystal lattice in second quantized notation as 
follows. The crystal consists of an equal number of two spinless Fermions, 
A and A', of the same mass. The system Hamilton is taken as 

H =  Ek ak+ak + ~k $+$ + v/n 2 ak+al &,+kc 6k+m-l-n (1) hn,- - - 
1.n 

- - 

where an attractive delta function potential, V, exists between particles of 
the two types, and where Ek = kZ/2m is the particle kinetic energy and 
afiaL+) creates an A (A') particle in plane wave state ~ / n  eik-r. Linear 
combination creation operators are now constructed 

where the uk and Vk are constants, and the A+ (A'+) create particles at 
lattice sites in a two sublattice system, the B+ (B'+) creating particles in the 
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PERCUS-YEVICK THEORY OF LIQUIDS 243 

interstitial positions. Qk is the reciprocal lattice vector of the particular 
crystal lattice being studied. 
The one particle orbitals that A+,A,A’+ ,A’,B+,B,B‘+ and B’ operate on are 

with associated densities 

The particle-hole creation amplitude, Ak(w), is defined by solving a self con- 
sistent field equation 

1 = v / a  x, k (1/4(Ek-Ek+Qk)2 - -  - -kAzYa (10) 
- 

which, in diagram form, is c=w+& L+a,,u k_’+QkE 

(1 1) 
Ir’+Q,.,€ - k‘ ,€ - - k ,w 

This equation is identical with the Matsubara-Yokota’ equation for the self 
consistent energy gap in the paramagnetic-antiferromagnetic transition, and 
that for the superconducting energy gap in the B.C.S. theory of the normal 
metal-superconducting metd transition. The uk and Vk parameters are given by 

Uk2 = 1/2 { (12) + (%+ak - €k)  ( (€k - Ek+Qk) + 4A2)-”’ 1 - - - -  - - 

Vk2 = 1/2 { - (€L+Qk - €k)  ((Ek -‘&+Qk)’ + 4AZ)-’/’ } 
- - - - - 

The two energy poles of the Green’s function are 

(13) z + 4Az)-1/2 EkA = 

EkB = 112 (Ek + E k + Q k )  + 1/2 ((%-Ek+Qk)2 - + 4A2)’k2 

1/2 (Ek + Ek+Qk)  - 1/2 ((Ek - - € k + Q k )  - _  
- - - _  - - 

- - - -  - - 
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244 E. SIEGEL 

where EkA and EkB are the orbital energies for the one particle states %A(‘) 

and (pkB(r) and p is the particle density. An energy gap of magnitude 2 A has 
opened up in the quasi-particle spectrum; excitation across the gap corresponds 
to particle-hole pair production. Thus, vacancy-interstitial pairs are formed 
with an energy U = 2 A. This conclusion of the formal self consistent theory 
agrees with that of Mukherjee’ and March*, who pointed out that the melting 
temperature is related to the vacancy formation energy in metals by 
OD = 6 u1”/v,1’3m1’2 where OD is the Debye temperature, which is related 
to the melting temperature, V, is the volume and m is the particle mass, S 
being a constant. The vacancy formation energy is a harmonic property since 
it is related to the sound velocity, vs or the Debye temperature OD. Enderby 
and March’ showed that U and T,, the melting temperature, are related, so 

k T , =  a m v S 2  (14) 

where a is a constant. 
Johannsson’ further finds that 

m V k F  InZ = 8.17 (1 5 )  

the critical Fermi wavevector, k, being that for the solid-liquid transition in 
a metal. I f  we consider the Fourier expansion of the density 

p (r) - = c pk eik..L (16) 
k -  

with k being the reciprocal lattice wavevector. The Fourier coefficients are 
the long range order parameters, given by 

p k = C  < $  Bd+> + ~ < $ i a > + ~  -- a’,i+>” - (17) 
k _ -  k - 

When only the first set of reciprocallattice vectors of a cubic lattice is 
retained, we find 

P Q ~  = A l V  (18) 
- 

Thus, A or pQk are equivalent long range order parameters to lowest order. 
A finite temperatures, A = A (T), and (10) becomes 

where nAk and nBk are Fermi factors, indicating the occupation probabilities 
for the states $(r) and @(r) .  

“k A = (1 -k eXp(% - - p)/kBT)-’ (20) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



PERCUS-YEVICK THEORY OF LIQUIDS 245 

nf - = (1 + exp(EF - -p)/kBT)-' (21) 

and the Fermi level p is determined by the conservation of particle number, 
2 Z ( n t  + n:) = N, so that U and A are determined by (19) and (21) 

simultaneously. At zero temperature nf = 1, n! = 0. Johannsson' shows that 
(19) should be simplified to 

A(T) = A(0) { nA(T) - nB(T) 1 = A ( 0 )  tanhA(T)/2 kBT (. -. 

the Lennard-Jones-Devonshire6 result. There is always one solution, A (T) = 0, 
and below a certain critical temperature, T,, another nonzero solution exists 

- - k -  

- - 

kBT, = A(O)/2 = U / 4  (23) 

corresponding to  the crystalline state. Thus 

T, / T, = 2 a m vs2 / A (0) = 4 a m vsz / U  (24) 
To consider the collective phonon description of the system, either in the 
random phase approximation (R.P.A.)' where the R.P.A. equation for the 
particle-hole channel of the two particle Green's function is studied, or in the 
equation of motion method', we concentrate on the density oscillation 
operator 

for acoustic phonons (where density oscillations for the A particles are in 
phase with those for the A' particles) or 

for optic modes (where density oscillations for the A particles are out of 
phase with those for the A' particles), and where Sk and tk are free parameters. 
The acoustic dispersion relation is 

- - 

A, (w)-  1 = 0 
- 

and the optic dispersion relation is 

(27) 
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246 E. SIEGEL 

whch are obtained by solving the Heisenberg equations of motion 

and 

where Johannsson' hascalculated the A, values using a diagram method. 
We seek the energy eigenvalues, wq or uB. e 

In analogy with the paramagn~tic-ferromagnetic phase transition, where 
paramagnons exist in the paramagnetic phase at temperatures above the Curie 
temperature, in the liquid-solid transition we have liquid phonons, density 
fluctuations of wavelength Xx27r/K,, the precursors of Umklapp phonons in 
the crystalline state, with a Brillouin zone of length 2 K1. Usually X>2n/KI 
for r> T, and in general there will be a whole set of wavelengths, but presum- 
ably that generated by the first Brillouin zone boundary dimension, K1, will 
dominate. In Figure 1 we illustrate the change of phonon dispersion relation 
upon melting as envisioned by Johannsson.' 

! L 

T =  TM 

* 
I 
I 
1 

0 v 

FIGURE 1 
phonons as temperature passes through the melting point. 

Percus-Yevick dispersion relations for solid and liquid, acoustic and optic 
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PERCUS-YEVICK THEORY OF LIQUIDS 247 

2. PERCUS-YEVICK THEORY OF MELTING 

O M 3  has utilized the collective coordinate approach of Percus and Yevick' 
to relate the entropy change upon melting of metals to the long wavelength 
part of the liquid structure factor. March" and Egelstaff" have nicely 
summarized the Percus-Yevick' couective coordinate approach t o  the many 
body problem in liquid dynamics. We shall here follow Omini's application 
to the melting phenomenon. Mott lo originally described a liquid as an 
ensemble of 3N Einstein oscillators, each harmonic and with a frequency OE 
about 1.4-2 times smaller than that in an Einstein crystal. Percus and Yevick' 
approximated the pair potential by a sum over an arbitrary, finite set { k}  of 
3N vectors in reciprocal space, whose components are multiples of K 1 .  The 
actual potential energy 

V =  1/2 .Z. Vbi-zj) = 1/2 Z ( l / 8n3)  J d3k eikki-+) ?(k)(30) - 

is approximated by an oscillator sum 

l#l i+ j 

where the coefficients vk are chosen to optimize the problem. They define 
collective coordinates 

so that the potential energy becomes 

the potential energy of an assembly of 3N harmonic oscillators, with angular 
frequencies 

(0%' - )2 = k' kB T (1 -k Vk - /kB T)/m (34) 

The liquid structure factor is defined as the time independent Van-Hove 
particle-particle correlation function 

S(k) - = 1 /2n  J dw S(k,o) - (35) 

(36) 

Its long wavelength limit was derived by Ascarelli, Harrison and Paskin13 to be 

s(0) = lim s (k) = kB T/  (kB T + V k )  - 
- k+O 
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248 E. SIEGEL 

so that the Percus-Yevick2 frequencies become 

( ~ k p ' ) ~  - = k2 k, T/m S(0) = k2 277 k, T / m  J S(k,w) - d w  (37) 

In the Percus-Yevick' theory, as in the Debye theory of solids, an upper 
cut-off in imposed on the dispersion relation 

kMAX = (lgnZp / m)l/3 = 31/3  kDeb'e MAX (38) 

giving a maximum upper frequency of 

(Ukpy)hAx = kB T / m  s(0) (18n'p / m)2'3 
- (39) 

It seems natural to equate this to the vacancy-interstitial pair production 
activation energy, since if U were less than ( o [ ~ ) ~ ~  than the dispersion 
relation, and the harmonic oscillators in the form they take in the solid, 
would decay spontaneously and so not exist. This value is then the onset of 
the liquid phonon regime. The Percus-Yevick2 dispersion relation, a straight 
line (with no dispersion), temperature dependetlt, and of slope (kBT/mS(0)) 
for small k, ie. in the long wavelength limit. Recalling that k,T = a m vs2 ,we 
can eliminate the particle mass to obtain 

(wkPY)* - = k2 T a vs2 / T, S(0) 

a relation between the frequency and wavevector of the lowest frequency 
liquid phonon in terms of the sound velocity, melting temperature and tem- 
perature. But T = T ,  at the melting temperature, so, in that iso-thermal 
process 

- = k' a vsz / S(0) (41) 

Now, the dispersion relation is expressed in terms of a temperature, a melting 
temperature, a sound velocity and the long wavelength limit of the liquid 
structure factor for temperatures greater than the melting temperature. 

3. LINDEMANN MELTING CRITERION 

We discuss the Lmdemann melting criterion, as reviewed by Pines 14, to give 
a more intuitive flavor to our discussion. Lindemann defined the critical 
parameter that determines the melting of a crystal lattice as the iso-thermal, 
fractional mean square amplitude of vibration of the atoms of the lattice 

y (T) = < 6 R Z i  (")>I R2 0 (42) 
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PERCUS-YEVICK THEORY OF LIQUIDS 249 

where 

where the E’S are the phonon polarization vectors. For terms with = g, h = h‘ 

< 6  R ~ ~ ( T ) >  = (l/mN) z <qk+, qkh > (44) 
k_h - - 

which PinesI4 shows is equal to 

where < Ekh > is the average energy of phonons with wavevector k and 
< nkh > isthe average number of phonons with that wavevector. Thus - 

The low temperature limit is shown to be 

y (0) 0.4 k, (a Itl /kg TM)”* ~ 0 . 4  kB 8, (a/ kB TM)I/’ (47) 

giving the mean square deviation of the lattice atoms for melting in terms of 
the melting and Debye temperatures of the solid. The high temperature limit, 
of interest in the melting phenomenon. where 

O k h  = v, k and < Q h >  = k, T i s  - - 

y(T) 1 . 6 k B T / m v , Z  = 1.6kD2 k B T / m d 2 D  (48) 

so that we can relate TM to OD via 

8 D  = (1.6 / YM)’” (kB T, (2.4 / Ro)2)1’2 = (49) 

213 1/2 ) 40 (TM / 7~ A RS2)1’2 E (kB TM / A  Vo 

where R, is the interatomic spacing, A is the atomic weight, A = 6.023 X 1023m, 
and V, is the atomic volume. In the next section we will relate y (T), A (T), 
U and ( w ~ y ) ~ A x  to unite all these theories of melting. 

- 
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250 E. SIEGEL 

4. RELATION OF S.C.F. AND PERCUS-YEVICK THEORIES 

We now relate the self consistent field theory of melting of Johannsson’ to 
the collective coordinate, Percus-Yevick’ theory of melting of Omini3, and 
see the relation of both to  the classical L idemann melting criterion. 

Johannsson’ utilized the Fourier components of the density pk as a set of 
long range order parameters. Each one defines a harmonic oscillator and some 
upper cut-off determines how many harmonic oscillators are allowed in the 
theory. The cut-off determines, or its determined by the Brillouin zone 
boundary (or boundaries) of the solid phase in question, as Figure 1 illustra- 
tes. We must notice that this is exactly the Percus-Yevick2’3 description of 
a liquid, in that a set of. harmonic oscillators, 3N in numDer, with some 
highest frequency i.e., some upper cut-off in their dispersion relation, describes 
the liquid, and according to Omini3, the entropy of melting of the solid, 
approached from the liquid side of the phase transformation. Since this is so, 
the Percus-Yevick’ dispersion relation (37) can be related to the Johannsson’ 
vacancy-interstitial energy gap parameter A (T), the Muhkejee’ and March’ 
vacancy formation energy, and the critical mean square displacement of the 
Lindemann melting criterion. We know 

(wkpy)MAx = (kB T/m ~ ( 0 ) ) ” ~  (18n’p / m)’13 

k,A, = 3’13 (kB O D  /vs)MAX = 3’’3 (kBeD/vsm 

(5  0) 

and, since W D  = vskD = kB8,, we see from (38) that 

( 5  1) 

So the vacancy-interstitial pair creation energy, which should beequal to the 
maximum in the Percus-Yevick’ dispersion relation, and equal to twice the 
energy gap parameter is 

U = 2 A(T) = (kB T/m S(O))’/’ ( 1 8 7 ~ ~ p / m ) ” ~  (52)  

= m VO2I3 OD2/&’  

So, A (T) - T ‘ I2 and U - T ‘ I 2 ,  or conversely A (T) - 8: and U - 8;. The 
temperature dependence of the Johannsson’ gap parameter thus is deducible 
from the collective coordinate Percus-Yevick2 dispersion relation. The gap is 
determined, iso-thermally, by long range parameters of the liquid, like S(O), 
and p ,  the only short range parameter (local) entering being the particle mass, 
m, a constant of both the solid and liquid phases. Since S(0) is an integral 
over the Van-Hove particle-particle correlation function, all frequency and 
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PERCUS-YEVICK THEORY OF LIQUIDS 25 1 

time dependence has already been removed from the problem, SO that A, nor 
U can be time or frequency dependent. Also, the vacancy-interstitial pair 
production activation energy turns out to be only dependent on long range 
values, S(0) and p,  of the liquid. 

We now proceed to compare these results to those of the Lindemann 
melting criterion. We say in (48) that 7 (T) - T, while in (52)  we saw that 
U=2A(T)-T’j2 so that we can trivially relate y, A, U, (ukpY)MAx and S(0); 
the Critical mean square displacement for melting in the Lindemann melting 
criterion, the self consistent energy gap for vacancy-interstitial pair produc- 
tion, the vacancy-interstitial formation energy, the cut-off in the Percus- 
Yevick theory of liquids via the collective coordinate approach and the long 
wavelength limit of the liquid structure factor. Using (50), and the high 
temperature result of the Lindemann theory, we find 

7 ( T ) z l . 6 k D 2  A2 V , 4 / 3 T / m T M  (53) 

7 ( T ) g ( 1 . 6 k B Z  / m v s 2 ) T  (54) 

and since 8, =vs k, / kB we rewrite this expression as 

Eliminating T from this equation and those relating ( w ~ y ) M A x p  U and A to 
T, by inverting (54) to use 

T n ( m  V s z /  1 . 6 k ~ ~ ) y = ( m T ~ /  1.6k,ZAV04/3)7 (5 5) 
we arrive at 

u (7) = 2~ (7) = (akpY)MAx = 

= (18n2p/m)’/’ (vs’ 7 /  1.6 k, S(0))’/2 = 

or inversely, using 

T = (uLy)& (m/ 18n2p)4/3 m S(0)/kB = 

= U2 (m/ 1 8 7 ~ ~ ~ ) ~ ’ ~  m S(0)/kB = 

= 4 A‘ (m/ 187~’p )~’~  m S(0)/kB 
we see 

(57) 
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252 E. SIECEL 

7 (U) = 1.6 kB/vs2 (m/ 1 8 7 ~ ’ p ) ~ ’ ~  s(0) uz ( 5 9 )  

Thus, a self consistent field determination of A (T), a kinetic determi- 
nation of U, a dispersion relation of the maximum in the collective coordinate 
dispersion relation frequency for a liquid, and the Lindemann melting cri- 
terion for the critical mean square atom displacement for melting are all 
essentially equivalent. Furthermore, since ( c + P Y ) ~ ~ X ,  u and A are all - T”’, 
the vacancy-interstitial pair production activation energy, the self consistent 
energy gap, and the high frequency limit of the Percus-Yevick collective 
coordinate theory of liquids are all proportional to the root mean square 
lattice site displacement of atoms necessary for .melting, since each is pro- 
portional to 7 ’/*. 

In conclusion, a determination of any of these parameters in a description 
of melting should be equivalent to a determination of any other of these 
parameters, so that, when applied to  a particular system, the self consistent 
field theory, the Percus-Yevick theory, the Lindemann melting criterion and 
the vacancy-interstitial pair production theory of melting should yield iden- 
tical predictions. In a future paper, we shall examine this equivalence for 
various simple metals. 
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